
CINERGIA'S EL+ vAC/DC is the most versatile regenerative Current Source in the market for energy testing in AC and DC applications. Thanks to its flexibility, this device becomes crucial for testing and R&D purposes in Smartgrids, Renewable Energy, Storage Systems, Electromobility, Avionics and Power HiL. Moreover, its regenerative hardware allows saving energy and power.

\bigcirc

Regenerative Technology

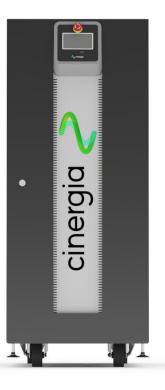
Thanks to our bi-directional topology, the AC/DC Electronic Load Converter are regenerative, resulting in a reduction of both the consumed energy during the tests and the power required from the electrical installation.

This technology allows us to work in both directions, as power generators or offering a consumption for the realization of all types of tests.

Main Applications

Bidirectional and Regenerative

Clean grid current


THDi <3% and PF > 0.98

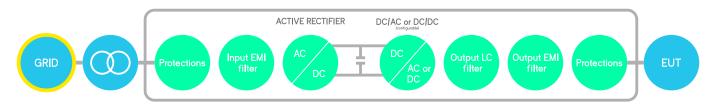
13 Models from 7.5kW to 160kW

Parallelization of units to increase the power

Independent phase configuration of

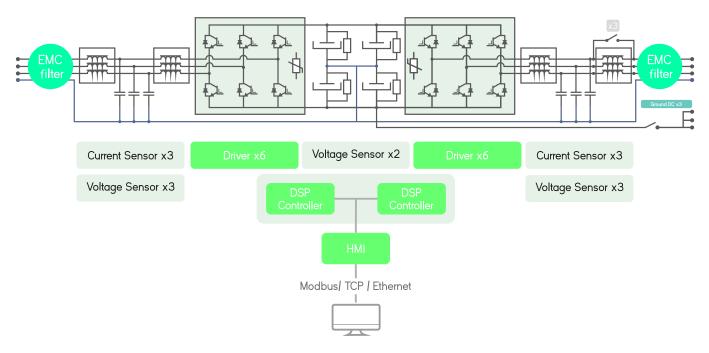
rms current, phase angle, harmonics, interharmonics, generation of fast transients ("Current Dips")

cinergia


Emulation of grid connected devices

Loads absorbing energy from grid Generators injecting energy to the grid Programmable Active/Reactive consumption Non-linear currents up to CF of 3

Overload of 200% P_{rated}


Modbus/Ethernet Open protocol, Labview drivers

Bidirectional and Regenerative Hardware

The hardware platform is based on a Back-to-Back power conversion topology, formed by two IGBT-based power stages. The grid side stage is an Active Rectifier which produces clean sinusoidal currents with very low harmonic distortion and power factor clase to one. The EUT side stage can be configured for AC voltage source or AC current source or DC output. In AC, voltage/current are controlled by using state of the art digital Proportional-Resonant controllers. In DC, the three independent buck-boost bidirectional legs enable the separated control of three different DC voltages or currents.

Block Diagram

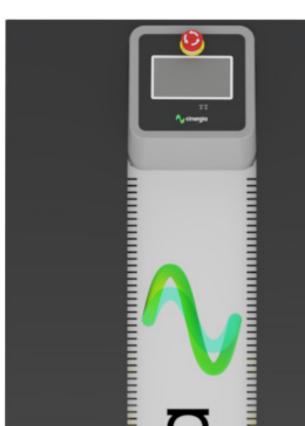
Local Interface

Analogue and Digital 10 ports

The isolated digital and analogue inputs/outputs permit the connection of the unit to External Controllers and Power Hardware in the Loop systems (option).

4.3" Touchscreen

Allows the local parameterization and command of the device, configuration of the communications link, plots the main signals and enables the local datalogging.


Safety First

The units integrate a local Emergency Stop pushbutton and two signals (input+ output) to be connected to the laboratory interlock system. Additionally, the digital outputs can be interfaced to safety tower lights.

Master/Slave

ePLUS is a modular platform enabling the master/slave connection of units with equal power.

EL+ vAC/DC Full ePlus

Better than ever, the enhanced **Plus** family

 \uparrow

What's better

MASTER/SLAVE CONNECTION

by using a fiber optics link to increase power/voltage capabilities: GE in AC: can be connected in parallel EL in AC: can be connected in parallel B2C: can be connected in parallel, or series or both

FASTER

30kHz control loop frequency

MORE HARMONICS

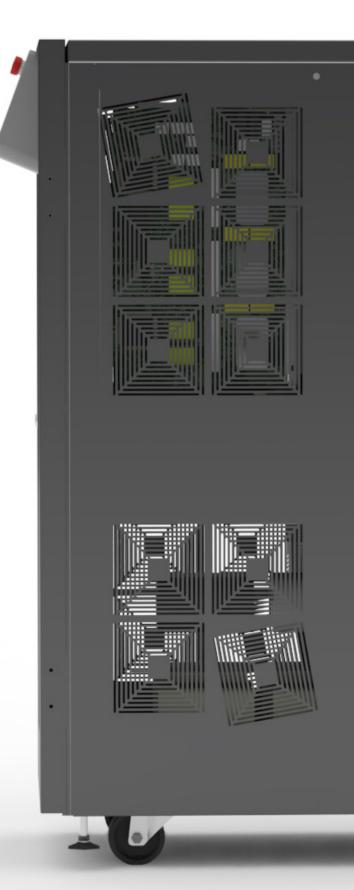
50 per phase with 20 free-harmonics

DELTA LOAD for the EL in AC mode

ADJUSTABLE DC TRANSIENT

controllers to improve stability of the system

OPTIMIZED RMS CALCULATION


for PV inverters anti-islanding test

SAME ELECTRICAL RATINGS and SAME BANDWIDTH

because the power platform does not change so robustness and ratings remain the same.

()
™ ™ Nu cinergia

Software

The user interface used by CINERGIA devices has been developed by our R&D team, to offer total control of the device, with a comfortable and intuitive design. This allows us to take full advantage of the capabilities of the device, as well as the programming and execution of standardized or self-created tests.

EL Modes

AC

AC AC Operation

From this panel, the user can set all AC parameters. Each phase can be independently configured: RMS current magnitude, phase delay, harmonics content, free-frequency harmonic and transition ramps. A plot shows the expected real-time waveform, the FFT representation and the numeric data: RMS, peak, CF and THD.

Steps Mode

One of the most remarkable

novelties of the new software is

the steps funcionality. Step test

files are saved and executed by

the DSP allowing deterministic

timing with a resolution of 66µs.

The user gains access to all

registers of the device to create

complex test sequences which

run directly in the converter without the need of an external

computer.

Harmonics

can

simultaneosly the magnitude of

the first 15 harmonics and one

free harmonic per phase. The

free one allows the generation

harmonics and high frequency

harmonics up to the 50th,

setting both the magnitude and

sub-harmonics,

control

inter-

device

The

of

phase delay.

Disturbance Generation

The steps mode includes predefined easy-to-use test panels. The AC faults panel is a powerful yet intuitive editor which allows generating and configuring flicker. Specific profiles can be saved in .csv files, modified, and reused by importing an existing one.

In Power mode, the active and reactive power of each phase is independently controlled. In Impedance mode, the device emulates an RLC load allowing to parameterize resistance, inductance and capacitance per phase making this device suitable for Anti-Islanding test of grid converters.

DOC DOC											
						0.P	110 110				
		•						Contraction (* and		THE R	
								No. 10	Not Cost		
Rostor (Mer) Intel 2005 mmili 21							***				
Information (Intelligence (Int							1700				
Cepartment(mf)											
							fymo				
		1 e	1 e.								
					1000						
			AND POWE	ini 💼		_					
	1000 100	0 1330 1				- 10					
				4343 530 4743 642		600 685					

Linear & Non-Linear Emulation

The capacity to emulate linear and non-linear loads in one of the main features of the 40 Electronic Load. Through our intuitive control software, the magnitude of harmonics can be set and different types of loads can be generated.

Vible III		600	00 ¹¹¹⁰	3 (m) 🖉		† †	👌 554 TO 284	of the test Device	
				z (ma) 🧭					
	requiry 1550			= (m) 🖉					
					+				
				i (rea 🧭	Τ.				
				0			Frank Street &		
				0					
								-	

EL+ vAC/DC Full ePlus

DC

DC DC Operation

This panel allows the user to access all DC setpoints and limits. Thanks to the unique Multichannel feature, each phase can have a different Operation Mode: voltage, current, power, resistance and advanced DC applications. Transition ramps, voltage and current limits can be modified. The limits for sink and source operation are different for safer testing, specially in battery applications.

The User Interface Software integrates a Sequence Editor to create automatic test sequences, save them for future use and import them in .csv files. A smart datalogger can be activated from the LCD of the unit to record automatically the resulting voltage and current measurements with a time resolution of 400 ms.

Enabling the Separated Channel Control converts the device in three functionally independent DC Bidirectional Power Supplies, sharing the common negative rail. Each channel can have a different status (ON, OFF, Warning, Alarm), Operation Mode (see Range and Specifications table), Setpoint, Ramp and Limits.

pe.	Sec										
					DC NIQUERCE						
		NU N	2				Yutope Vot Convert Res				
		NJ KAK	nege Trans Balant (*	100							
			NN ROOMER (A)	ler;							
		74) 3886	100 100 2000 (x)	forg Little	a jejin		Mare Inc.	Last	. 1	20	2
			eta 947 640 1 (77	Lang 1 1.000	xa z jona		10 Mare Law Doct	Open 16 Open 16 Time to New Cancel App	•	Save 1	

Battery Pack Tester

This functionality enables the user to precisely control the charge, discharge and cycling of a Battery. Basic paramters include the charge/discharge current, fast charge and floating voltages while Advanced parameters add Energy (Ah) and Time as transition conditions. Prof iles for each Battery technology can be saved and imported in .CSV files.



The B2C+ integrates a mathematical model to emulate the voltage behaviour of a real battery pack. The output voltage will change as a function of the SOC and Current. By confi guring the provided parameters, the voltage profi le can be adjusted to match different technologies: Lilon, NiMH, NiCd, Pb, Flux, etc.

The PV Panel model is based on the single-diode equivalent circuit of a PV cell and the series-parallel connection of cells to form a panel. A Runtime functionality allows the simulation of a complete day by launching different irradiance and temperature setpoints from a .csv f ile, enabling the user burn-in and functional tests of PV Inverters.

EL+ vAC/DC Range & Specifications

Input side (GRID side)

AC Voltage

Rated: 3x400Vrms +Neutral+ Earth Range: +15% / -20% (-10% @ P_{rated})

Rated AC Current

Depends on model (see Wiring Manual)

Frequency 48-62Hz

Current Harmonic Distortion

THDi < 3% at rated power

Current Power Factor

PF > 0.98 at rated power

Efficiency

 \geq 89% (7.5 & 10), \geq 91% (15 to 30), \geq 92% (40 to 200)

Output side in DC (EUT side)

Terminals

Number: 6(3 positive + 3 negative)

Configuration of Channels

Unipolar 3-channels 2Q, independent setpoints per channel Unipolar 1-channel 2Q, one global setpoint for all channels Multichannel: 2Q, independent start/stop, operation mode and setpoints per channel (note: multichannel is an option for ≥ 80kVA) Bipolar (4Q two independent setpoints)

Voltage (CV)

 $\begin{array}{l} \mbox{Range: } 20:20^{(1)}\mbox{to }750\mbox{ (800V with High Voltage option)} \\ 40:0\mbox{to }+350\mbox{ / }0\mbox{to }-350\mbox{ (+ rail / }0\mbox{ / - rail, Bipolar configuration)} \\ \mbox{Setpoint Resolution: }10m\mbox{ U} \\ \mbox{Effective Resolution}^{(2)}:<0.05\%\mbox{ of }FS^{(3)} \\ \mbox{Setpoint Accuracy}^{(4)}:\pm0.1\%\mbox{ of }FS^{(3)} \\ \mbox{Transient Time}^{(5)}:<1m\mbox{ (10\% to }90\%\mbox{ at a step to }V_{rated})^{(10)} \\ \mbox{Ripple}^{(7)}\mbox{ (peak-peak)}:<0.55\%\mbox{ of }FS^{(3)} \\ \end{array}$

Current Mode (CC)

 $\label{eq:range:rom0 to \pm 110\% of I_{rated} (see models table) \\ Setpoint Resolution: 10mA \\ Effective Resolution^{(2)}: < 0.05\% of FS^{(3)} (< 0.1\% models 7.5 \& 10) \\ Setpoint Accuracy^{(4)}: \pm 0.2\% of FS^{(3)} \\ Transient Time^{(5)}: < 1ms (10\% to 90\% at a step to I_{rated})^{(10)} \\ Ripple^{(7)} (peak-peak): < 0.7\% of FS^{(3)} \\ \end{array}$

Power Mode (CP)

 $\begin{array}{l} \mbox{Range: from 0 to \pm 200\%^{(8)}$ of P_{rated} (see models table)$ \\ \mbox{Derived current setpoint: $P_{setpoint} / $V_{measured}$ \\ \mbox{Setpoint Resolution: 1W}$ \\ \mbox{Effective Resolution(2): $< 0.1\%$ of $FS^{(3)}$ ($< 0.25\%$ models 7.5 & 10)$ \\ \mbox{Setpoint Accuracy}^{(4)}: \pm 0.4\%$ of $FS^{(3)}$ \\ \mbox{Transient Time}^{(5)}: $< 2.5ms$ (10\%$ to 90% at a step to P_{rated})^{(10)}$ \\ \end{array}$

Resistance Mode (CR)

Range: from 0.1 to 1000 Ohm Derived current: $V_{measured} / R_{setpoint}$ Setpoint Resolution: 0.01 Ohm Setpoint Accuracy⁽⁴⁾: \pm 0.2% of FS⁽³⁾ Transient Time⁽⁵⁾: < 2ms (10% to 90% at a step to R_{rated})⁽¹⁰⁾

Output side in AC (EUT side)

Terminals Number: 4 (3 phases + 1 neutral)

Configuration of Channels

3 channels: 40, independent setpoints per phase Multichannel: 40, independent start/stop, alarm status and setpoints per phase (note: multichannel is an option for ≥ 80kVA)

Output side in EL-AC

.

Admissible voltage
Connection: 1-phase, 3-phase star or 3-phase delta Maximum: ± 400V peak Range: 10-100Hz 35 ⁽¹⁾ to 277Vrms phase-neutral (295Vrms with HV option) 35 ⁽¹⁾ to 480Vrms phase-phase (510Vrms with HV option) >100Hz: maximum rms voltage follows V·f < 46000 Frequency: 10 to 400Hz
Current Mode (CC)
Range: from 0 to \pm 200% ⁽⁸⁾ of I _{rated} (see models table) Setpoint Resolution: 10mA _{rms} Effective Resolution ⁽²⁾ : < 0.05% of FS ⁽³⁾ (< 0.1% models 7.5 & 10) Setpoint Accuracy ⁽⁴⁾ : < \pm 0.2% of FS ⁽³⁾ Transient Time ⁽⁵⁾ : < 1.5ms(10% to 90% at a step transient) Ripple ⁽⁷⁾ (peak-peak): < 0.7% of FS ⁽³⁾ (with Low Ripple Inductor option)
Phase Angle (cos ø)
Range: -90 to 90° in Sink / Source Resolution: 0.01°
Harmonics
Range: up to 50th 50 independent harmonics per phase:

20 free programmable frequency and phase from 0.1 to 50 times f_0 30 fixed frequency Harmonics content: V-f < 46000 (with current derating) Setpoint Accuracy⁽⁴⁾: same as current accuracy Small Signal Bandwidth: up to 5000Hz⁽⁹⁾ Transient Time⁽⁵⁾: < 2ms (10% to 90% at a step change)

Power Mode (CP / CS)

Range: from 0 to ± 200⁽⁸⁾ of Prated (see models table) Derived current setpoint: calculated from ISI and $\Phi(S)$ Setpoint Resolution: 1W, 1VA Effective Resolution⁽²⁾: < 0.1% of FS⁽³⁾(< 0.25% models 7.5 & 10) Setpoint Accuracy⁽⁴⁾: ± 0.4% of FS⁽³⁾ Transient Time⁽⁵⁾: < 2.5ms (10% to 90% at a step to P_{rated})

Impedance Mode (CZ) Enhanced

Enhanced

Calculation method configurable (rms, instantaneous) Range: from 0.8 to 1000 Ohm, 0.1 to 2000mH, 0 to 3.7mF Derived current/phase setpoint: calculated from IZI and $\Phi(Z)$ Setpoint Resolution: 0.010hm/mH/mF Setpoint Accuracy⁽⁴⁾: see current accuracy Transient Time⁽⁵⁾: < 2.5ms (10% to 90% at a step to R_{rated})

Operation Modes

Programmable Voltage (CV) Programmable Current (CC) Programmable Power(CP) Programmable Resistance (CR) Power Amplifier (HiL) Steps Optional Battery Testing (BTest) (charge/discharge/cycling) ^{Optional} Battery Emulation (BEmu) Optional PV Panel Emulation (PVEmu) AC

DC

Programmable Current (CC) Programmable Power (CP / CS) Programmable Impedance (CZ) Power Amplifier (HiL) Steps

Overload/ **Overcurrent**

Admissible DC overcurrent is: 110% of rated value during 1 minute Admissible AC overcurrent: 125% of rated value during 10 minutes, 150% during 1 minute, 200% during 2 seconds Admissible overloads: 125% of rated value during 10 minutes, 150% during 1 minute, 200% during 2 seconds

User Interface

Local Control (4.3" Touchscreen panel)

Emergency Stop pushbutton

Touchscreen panel

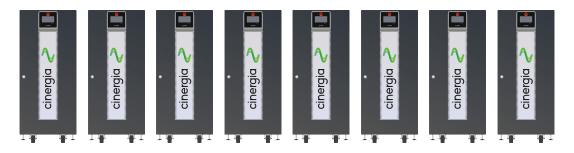
4.3

Isolated Digital port: 6 inputs, 4 outputs Isolated Analogue port: 6 inputs (rms setpoints or power amplifier), 6 outputs (rms readback or real-time readback) Interlock port: 1 NC Input, 1 NO Output Emergency Stop pushbutton

Remote Control Port

LAN Ethernet with Open Modbus-TCP protocol RS485 (option), CAN and RS232 (using external gateway)

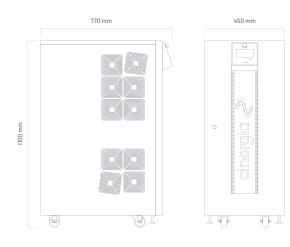
Software

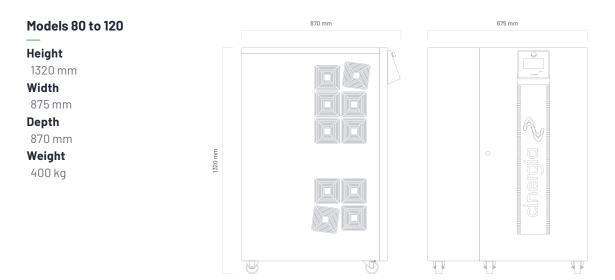

Graphical User Interface for Windows 7/10 LabView drivers and open Labview interface example

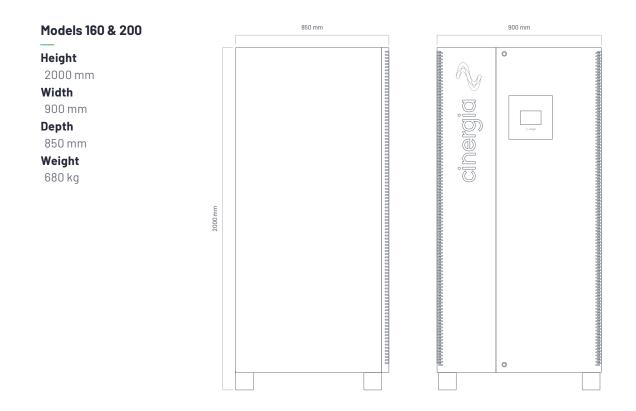
Enhanced Master/Slave Operation

Connection: fiber optics link (x6)

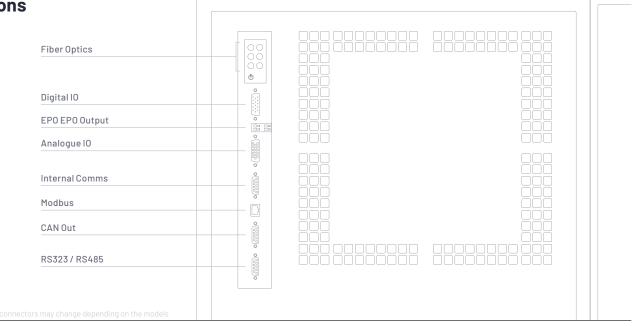
Configuration: from software user interface/MODBUS up to 8 units:

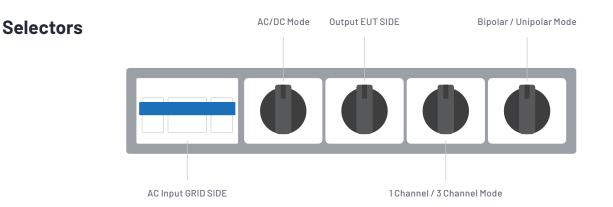

- AC: Parallel
- DC: Parallel, serial or serial-parallel




Size and Weight

Models 7.5 to 60


Height 1100 mm Width 450 mm Depth 770 mm Weight 200 kg



Connections

The type of selectors and their location may change depending on the model

Protections	Overvoltage (peak, rms), Overcurrent (peak, rms), Overload Shortcircuit, Emergency Stop, Watchdog, Heart Beat, Output Contactar, Wrong Configuration Alarms and Limits are user configurable and can be saved in a password protected EEPROM
Mesurements ⁽⁶⁾	Grid Voltage (rms), Current (rms), Power (P,O) and Frequency Output Voltage (rms, avg), Current (rms, avg), Power (P,O) and Frequency Heatsink Temperatures (x2) and DC Link Voltage Datalogging available through FTP connection
Ambient	Operating temperature ⁽⁸⁾ : 5-40°C Relative Humidity: up to 95%, non-condensing Cooling: Forced air Acoustic noise at Im: < 52dB(A)(7.5 to 60), < 65dB(A)(80 to 120),< 70dB(A)(160 and 200)
Standards	CE Marking Operation and Safety: EN-50178, EN-62040-1 EMC: EN-62040-2 RoHS

All specifications are subject to change without notice.

Options

Choose your options:

- Three channel mode: allows different operation mode start/stop/reset per channel (included in all models from 7.5 to 60, both included)
- 30kHz Switching Frequency: only available for models 15 (derated to 7.5kW), 20 (derated to 7.5kW) and 30 (derated to 10kW)
- Isolation monitor (advised far IT systems)
- Low current ripple inductance (included in all models ≤54kW. optional for models ≥80kW)
- High Frequency 360 900 Hz

- Anti-islanding monitor (only advised in net injection to the grid and following local regulations)
- High Voltage (HV): voltage up to 295Vrms phase-neutral in AC up to 800V in DC
- RS485
- Battery Emulation
- Battery Test
- PV Panel Emulation

All specifications are subject to change without notice.

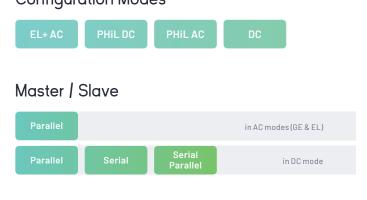
- Minimum voltage setpoint is 0V in DC. The recommended minimum setpoint for long-term use is 20Vrms in AC and 20V in DC.
 Effective resolution measured with a 400ms window
- FS Range of voltage is 830V (with High Voltage option) FS Range of current is 2·13 · Irated [(see models table) FS Range of power is 2·1200% · Prated [(see models table)
- Accuracies are valid for settings above 10% of FS
- Measured with the rated resistive load and high-dynamics controllers configuration.
- Accuracy of measurements is ±0.1% of FS for rms voltage, ±0.2% of FS for rms current, ±0.4% of FS for active power(valid only above 10% of FS)
 Consult us for lower voltage/current ripple requirements
- Rated power figures are given at 20 °C
- 9. The maximum output voltage depends on frequency following V·f < 46000
- 10. With fast DC control behaviour

Models

EL+ vAC/DC Full

Reference	AC Power Rated ⁽⁹⁾	AC Current Rated ^(®) RMS 3 channels / 1 channel	DC Power Rated ⁽⁹⁾	DC Current Rated ⁽⁹⁾ RMS 3 channels / 1 channel	Weight (kg) (lbs)	Dimensions DxWxH (mm) (inch)
EL+7.5 vAC/DC	7.5 kW	11 A / 33A	7.5 kW	±10A / ±30A		
EL+10 vAC/DC	10 kW	15 A / 45 A	10 kW	±15A / ±45A		
EL+15 vAC/DC	15 kW	22 A / 66 A	15 kW	±20A/±60A	155 kg 341.71 lbs	
EL+20 vAC/DC	20 kW	29 A / 87 A	20 kW	±25A / ±75A	541.71105	770 x 450 x 1100 mr 30.31 x 17.71 x 43.30
EL+30 vAC/DC	27 kW	40 A / 120 A	27 kW	±30A/±90A		
EL+40 vAC/DC	40 kW	58 A / 174 A	40 kW	±40A/±120A		
EL+50 vAC/DC	50 kW	73 A / 219 A	50 kW	±50A / ±150A	200 kg 440.92 lbs	
EL+60 vAC/DC	54 kW	80 A / 240 A	54 kW	±57A / ±171A	440.32105	
EL+80 vAC/DC	80 kW	116 A / -	80 kW	±105A / ±315A		
EL+100 vAC/DC	100 kW	145 A /-	100 kW	±130A / ±390A	400 kg 881.84 lbs	870 x 875 x 1320 mm 34.25 x 34.44 x 51.97
EL+120 vAC/DC	108 kW	157 A / -	108 kW	±130A / ±390A	001.04105	J4.25 X J4.44 X 51.97
EL+160 vAC/DC	145 kW	211 A / -	145 kW	±155A / ±465A	680 kg	850 x 900 x 2000 mm
EL+200 vAC/DC	160 kW	232 A /-	160 kW	±185A / ±555A	1499.14 lbs	33.46 x 35.43 x 78.74
I specifications are subject to c	change without notice.					

For EL mode is not available a physical 3 channel/1 channel switch. To work in a single hase mode, it's necessary to introduce a monphasic grid at the output


Galvanic Isolation

		Circuit Breaker Recommended	Weight (kg) (Ibs)
	IT 7.5i	Туре С - 25 А	
net	IT 10i	Туре С - 25 А	145 kg
Inside the cabinet	IT 15i	Туре С - 32 А	319.67 lbs
the	IT 20i	Туре С - 40 А	
i de 1	IT 30i	Туре С - 50 А	10E kg
lns	IT 40i*	Туре С - 63 А	195 kg 429.90 lbs
	IT 50i*	Туре С - 83 А	429.90105

*In the **IT 40i** and **IT 50i** models the size of the cabinet increases to a total of 770 x $835\,x\,1100\,mm$ (27.55 x 32.87 x 43.31"). The others keep the original size.

		Circuit Breaker Recommended	Weight (kg) (lbs)	Dimensions D×W×H (mm) (inch)
	IT 30e	Type D - 80 A	174 kg 383.60 lbs	595 x 415 x 708 mm 23.42 x 16.33 x 27.87 "
	IT 40e	Type D - 100 A	217 kg 478.40 lbs	725 x 525 x 773 mm
	IT 50e	Type D - 125 A	280 kg 617.29 lbs	28.54 x 20,67 x 30.43 "
net IP20	IT 60e	Туре D - 160 А	381 kg 839.96 lbs	
In external cabinet IP20	IT 80e	Type D - 200 A	435 kg 959.01 lbs	875 x 600 x 900 mm
In exter	IT 100e	Type D - 250 A	458 kg 1009.72 lbs	34.44 x 23.62 x 35.43 "
	IT 120e	Type D - 315 A	514 kg 1133.18lbs	
	IT 160e	Type D - 400 A	612 kg 1349.23 lbs	964 x 648 x 1252 mm 37.95 x 25.51 x 49.29 "
	IT 200e	Type D - 500 A	753 kg 1660.10 lbs	1192 x 744 x 1430 mm 46.92 x 29.29 x 56.29 "

Configuration Modes

Channel Configuration in EL

Channel Configuration in DC

+34 934 864 358 cinergia@cinergiapower.com

Regenerative Power Electronic Solutions